Math.101 Make-up Second Exam.

December 22, 1996. Duration

75 minutes.

Calculators are not allowed

Answer the following questions (all items are weighted equally at 5 points ach):

1. Use differentials to find an approximate value of
$$\frac{2.99}{\sqrt{1-(2.99)^2}}$$

2. Let y be a function defined implicitly by the equation

$$x^2y + \tan\sqrt{x^2 + y} = 1,$$

find an equation of the tangent line to the graph of y at the point $(\frac{\pi}{4},0)$

- 3 Suppose f is a function defined on $(-\infty, \infty)$, f'(x) = 1 for all x and f(2) = 3. Use the Mean Value Theorem to show that f(x) = x + 1 for all x.
- 4. A piece of ice of the shape of a sphere is melting and its surface area, S, is given, by the time-dependent relation $S=4\pi\left(25-t^2\right)$

If the sphere does not loose shape, then find the rate of change of its volume when t=4 sec.

5. Let

$$f(x) = 3 - \frac{4}{x} - \frac{4}{x^2}.$$

- (a) Find the intervals on which f is increasing or decreasing, and find the local extrems of f (if any).
- (b) Find the intervals on which the graph of f is concave upward or concave downward, and find the points of inflection (if any).
- (c) Find the vertical and horizontal asymptotes for the graph of f (if any).
- (d) Sketch the graph of f.

(Good Luck)